Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

RecA protein self-assembly. II. Analytical equilibrium ultracentrifugation studies of the entropy-driven self-association of RecA.

Identifieur interne : 004994 ( Main/Exploration ); précédent : 004993; suivant : 004995

RecA protein self-assembly. II. Analytical equilibrium ultracentrifugation studies of the entropy-driven self-association of RecA.

Auteurs : S L Brenner [États-Unis] ; A. Zlotnick ; W F Stafford

Source :

RBID : pubmed:2266565

Descripteurs français

English descriptors

Abstract

We have investigated the self-association of RecA protein from Escherichia coli by equilibrium ultracentrifugation. Monomeric RecA (Mr = 37,842) was observed in reversible equilibrium with trimers, hexamers and dodecamers in the presence of 1.5 M-KCl, 5 mM-Hepes, 1 mM-EDTA, 2 mM-ATP (pH 7.0) at 1 degrees C. The equilibrium was strongly temperature-dependent, with polymerization being favored as the temperature was raised from 1 degrees C 21 degrees C, and was reversible with respect to temperature. The values of both the standard enthalpy and entropy of self-association were positive, indicating that it is an entropy-driven process under these conditions. In the absence of KCl, in 50 mM-citrate, 5 mM-ATP, 5% (v/v) glycerol (pH 6.0) at 4 degrees C, only small amounts of RecA monomer could be detected, while in 10 mM-Tris-acetate, 10% glycerol (pH 7.5) at 4 degrees C, the smallest species present in significant concentration appeared to be the trimer. The majority of the species observed had molecular weights between 228,000 and 456,000, suggesting dominant stoichiometries of six to 12 monomers per oligomer. At pH 6.0, in the absence of ATP, much larger oligomers containing at least 24 monomers also appeared to be present. The data are consistent with an equilibrium mixture of monomers, trimers, hexamers, dodecamers, 24-mers and higher oligomers, with the distribution of oligomers being dependent on solution conditions. Thermodynamic analysis indicates that these oligomeric species are in reversible equilibrium with each other. It is not certain whether trimers assemble directly into hexamers, or whether disassembly into monomers is a prerequisite for the formation of higher oligomers. The possible role of higher-order RecA oligomers in the formation of RecA nucleoprotein filaments is discussed.

DOI: 10.1016/S0022-2836(99)80013-8
PubMed: 2266565


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">RecA protein self-assembly. II. Analytical equilibrium ultracentrifugation studies of the entropy-driven self-association of RecA.</title>
<author>
<name sortKey="Brenner, S L" sort="Brenner, S L" uniqKey="Brenner S" first="S L" last="Brenner">S L Brenner</name>
<affiliation wicri:level="2">
<nlm:affiliation>Central Research and Development Department E.I. du Pont de Nemours and Co., Inc., Wilmington, DE 19880-0328.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Delaware</region>
</placeName>
<wicri:cityArea>Central Research and Development Department E.I. du Pont de Nemours and Co., Inc., Wilmington</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Zlotnick, A" sort="Zlotnick, A" uniqKey="Zlotnick A" first="A" last="Zlotnick">A. Zlotnick</name>
</author>
<author>
<name sortKey="Stafford, W F" sort="Stafford, W F" uniqKey="Stafford W" first="W F" last="Stafford">W F Stafford</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1990">1990</date>
<idno type="RBID">pubmed:2266565</idno>
<idno type="pmid">2266565</idno>
<idno type="doi">10.1016/S0022-2836(99)80013-8</idno>
<idno type="wicri:Area/PubMed/Corpus">002A13</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002A13</idno>
<idno type="wicri:Area/PubMed/Curation">002A13</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002A13</idno>
<idno type="wicri:Area/PubMed/Checkpoint">002861</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">002861</idno>
<idno type="wicri:Area/Ncbi/Merge">000966</idno>
<idno type="wicri:Area/Ncbi/Curation">000966</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">000966</idno>
<idno type="wicri:doubleKey">0022-2836:1990:Brenner S:reca:protein:self</idno>
<idno type="wicri:Area/Main/Merge">004A70</idno>
<idno type="wicri:Area/Main/Curation">004994</idno>
<idno type="wicri:Area/Main/Exploration">004994</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">RecA protein self-assembly. II. Analytical equilibrium ultracentrifugation studies of the entropy-driven self-association of RecA.</title>
<author>
<name sortKey="Brenner, S L" sort="Brenner, S L" uniqKey="Brenner S" first="S L" last="Brenner">S L Brenner</name>
<affiliation wicri:level="2">
<nlm:affiliation>Central Research and Development Department E.I. du Pont de Nemours and Co., Inc., Wilmington, DE 19880-0328.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Delaware</region>
</placeName>
<wicri:cityArea>Central Research and Development Department E.I. du Pont de Nemours and Co., Inc., Wilmington</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Zlotnick, A" sort="Zlotnick, A" uniqKey="Zlotnick A" first="A" last="Zlotnick">A. Zlotnick</name>
</author>
<author>
<name sortKey="Stafford, W F" sort="Stafford, W F" uniqKey="Stafford W" first="W F" last="Stafford">W F Stafford</name>
</author>
</analytic>
<series>
<title level="j">Journal of molecular biology</title>
<idno type="ISSN">0022-2836</idno>
<imprint>
<date when="1990" type="published">1990</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adenosine Triphosphate (metabolism)</term>
<term>DNA-Binding Proteins (chemistry)</term>
<term>Escherichia coli</term>
<term>Hydrogen-Ion Concentration</term>
<term>In Vitro Techniques</term>
<term>Macromolecular Substances</term>
<term>Osmolar Concentration</term>
<term>Polymers</term>
<term>Protein Binding</term>
<term>Rec A Recombinases (chemistry)</term>
<term>Temperature</term>
<term>Thermodynamics</term>
<term>Ultracentrifugation</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adénosine triphosphate (métabolisme)</term>
<term>Concentration en ions d'hydrogène</term>
<term>Concentration osmolaire</term>
<term>Escherichia coli</term>
<term>Liaison aux protéines</term>
<term>Polymères</term>
<term>Protéines de liaison à l'ADN ()</term>
<term>Rec A Recombinases ()</term>
<term>Structures macromoléculaires</term>
<term>Techniques in vitro</term>
<term>Température</term>
<term>Thermodynamique</term>
<term>Ultracentrifugation</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>DNA-Binding Proteins</term>
<term>Rec A Recombinases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Adenosine Triphosphate</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Adénosine triphosphate</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Escherichia coli</term>
<term>Hydrogen-Ion Concentration</term>
<term>In Vitro Techniques</term>
<term>Macromolecular Substances</term>
<term>Osmolar Concentration</term>
<term>Polymers</term>
<term>Protein Binding</term>
<term>Temperature</term>
<term>Thermodynamics</term>
<term>Ultracentrifugation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Concentration en ions d'hydrogène</term>
<term>Concentration osmolaire</term>
<term>Escherichia coli</term>
<term>Liaison aux protéines</term>
<term>Polymères</term>
<term>Protéines de liaison à l'ADN</term>
<term>Rec A Recombinases</term>
<term>Structures macromoléculaires</term>
<term>Techniques in vitro</term>
<term>Température</term>
<term>Thermodynamique</term>
<term>Ultracentrifugation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We have investigated the self-association of RecA protein from Escherichia coli by equilibrium ultracentrifugation. Monomeric RecA (Mr = 37,842) was observed in reversible equilibrium with trimers, hexamers and dodecamers in the presence of 1.5 M-KCl, 5 mM-Hepes, 1 mM-EDTA, 2 mM-ATP (pH 7.0) at 1 degrees C. The equilibrium was strongly temperature-dependent, with polymerization being favored as the temperature was raised from 1 degrees C 21 degrees C, and was reversible with respect to temperature. The values of both the standard enthalpy and entropy of self-association were positive, indicating that it is an entropy-driven process under these conditions. In the absence of KCl, in 50 mM-citrate, 5 mM-ATP, 5% (v/v) glycerol (pH 6.0) at 4 degrees C, only small amounts of RecA monomer could be detected, while in 10 mM-Tris-acetate, 10% glycerol (pH 7.5) at 4 degrees C, the smallest species present in significant concentration appeared to be the trimer. The majority of the species observed had molecular weights between 228,000 and 456,000, suggesting dominant stoichiometries of six to 12 monomers per oligomer. At pH 6.0, in the absence of ATP, much larger oligomers containing at least 24 monomers also appeared to be present. The data are consistent with an equilibrium mixture of monomers, trimers, hexamers, dodecamers, 24-mers and higher oligomers, with the distribution of oligomers being dependent on solution conditions. Thermodynamic analysis indicates that these oligomeric species are in reversible equilibrium with each other. It is not certain whether trimers assemble directly into hexamers, or whether disassembly into monomers is a prerequisite for the formation of higher oligomers. The possible role of higher-order RecA oligomers in the formation of RecA nucleoprotein filaments is discussed.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Delaware</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Stafford, W F" sort="Stafford, W F" uniqKey="Stafford W" first="W F" last="Stafford">W F Stafford</name>
<name sortKey="Zlotnick, A" sort="Zlotnick, A" uniqKey="Zlotnick A" first="A" last="Zlotnick">A. Zlotnick</name>
</noCountry>
<country name="États-Unis">
<region name="Delaware">
<name sortKey="Brenner, S L" sort="Brenner, S L" uniqKey="Brenner S" first="S L" last="Brenner">S L Brenner</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004994 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 004994 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:2266565
   |texte=   RecA protein self-assembly. II. Analytical equilibrium ultracentrifugation studies of the entropy-driven self-association of RecA.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:2266565" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021